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We consider a deposition model in which balls rain down at random towards
a 2-dimensional surface, roll downwards over existing adsorbed balls, are
adsorbed if they reach the surface, and discarded if not. We prove a spatial law
of large numbers and central limit theorem for the ultimate number of balls
adsorbed onto a large toroidal surface, and also for the number of balls
adsorbed on the restriction to a large region of an infinite surface.
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1. INTRODUCTION AND STATEMENT OF RESULTS

Random sequential adsorption (RSA) is a mathematical model, incorporat-
ing stochastic and geometric elements, for sequential deposition of colloidal
particles or proteins onto a surface (or substrate); particles arrive at
random locations, and each adsorbed particle occupies a region of the
substrate which prevents the adsorption of any subsequently arriving
particle in an overlapping surface region. Scientific interest is considerable;
for a series of surveys, see Colloids and Surfaces A 165 (2000), for example
Privman, (12) Senger et al., (14) Talbot et al., (17) and Wang. (18) See Evans (5) for
a much-cited earlier survey.

For deposition onto a surface of dimension d, there have been many
simulation studies, often concerned with the number of particles ultimately
adsorbed onto a region of substrate. It is of interest to know whether this
satisfies a law of large numbers (LLN, i.e., a thermodynamic limit) and
central limit theorem (CLT, i.e., Gaussian fluctuations) as the region
becomes large. While previous rigorous mathematical studies were mainly



restricted to 1 dimension, for general d Penrose (9) proved a LLN for
various continuum systems, and proved both LLNs and CLTs for certain
lattice systems. (10) Penrose and Yukich (11) proved both LLNs and CLTs
for continuum systems with finite input where the addition of incoming
particles is terminated before saturation occurs. Except in the case d=1
(Dvoretzky and Robbins (4)), a CLT for infinite-input continuum RSA
remains elusive.

In the present work we prove a LLN and CLT for an infinite-input
continuum model related to RSA which has received attention in its own
right on grounds of realism, namely, a form of monolayer ballistic deposi-
tion (BD), representing deposition in the presence of a gravitational field.
Each incoming particle occupies a Euclidean ball of radius r in Rd+1, with
d=2 or d=1; the (d+1)-st coordinate represents ‘‘height.’’ An incoming
particle falls perpendicularly from above towards a substrate represented
by the surface Rd×{0} … Rd+1, which we identify with the lower-dimen-
sional space Rd, or a sub-region thereof (the target region). Its downward
motion is vertical until it hits the substrate or one of the particles pre-
viously adsorbed. If it contacts a previously deposited particle, then the
new particle rolls, following the path of steepest descent until it reaches a
stable position. If the new particle reaches the adsorption surface, it is fixed
there; otherwise it is removed from the system. For d=1, the model dates
back to Solomon (ref. 15, p. 129), and the formulation in d=2 by Jullien
and Meakin (6) has led to considerable renewed interest; see refs. 14 and 17.
We state and prove results only for d=2; changing to d=1 makes things
easier.

To avoid having to specify the behaviour of particles near the bound-
ary of the target region, we assume, as in most simulation studies, that the
target region is a torus with integer dimensions. Given A … Z2 of the form
A={m1,..., m2}×{m3,..., m4} (a lattice rectangle), define Ã … R2 by

Ã=(m1 −1, m2]×(m3 −1, m4]. (1.1)

We focus attention mainly on target regions of this form, and adopt
periodic (toroidal) boundary conditions for the rolling mechanism.

SupposeX1, X2, X3,... are independent and uniformly distributed over Ã.
These form the random input to the model with target region Ã; the vector
Xi represents the position at which the ith incoming ball would end up
touching the 2-dimensional substrate if it were to fall un-hindered. Succes-
sive balls are adsorbed (with possible displacement due to rolling) or
rejected according to the BD mechanism described above, but adopting the
toroidal boundary conditions, whereby an adsorbed particle near one edge
of the rectangle Ã can influence the rolling of a particle near the opposite
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edge. The process terminates when there is no available space left on the
substrate large enough to contain a new item ( jamming of Ã); that is, when
every point of Ã lies within a distance less than 2r, using the toroidal
metric, from some point in Ã that is the location of the point of contact of
some previously adsorbed ball.

Let N(A) denote the (random) number of balls adsorbed at the ter-
mination time. Our first result is a LLN for N(A) as A becomes large. For
any sequence of sets (An)n \ 1, set

lim inf(An) :=0
n \ 1

3
m \ n

Am.

For p \ 1, let |0L
p

denote convergence in pth moment as nQ..

Theorem 1.1. There is a constant m=m(r) > 0 such that if (An)n \ 1

is a sequence of lattice rectangles satisfying lim inf(An)=Zd, then for any
p ¥ [1,.),

N(An)
|An |

|0L
p

m. (1.2)

Next, we give an associated CLT. Let N(0, s2) denote a normally
distributed random variable with mean zero and variance s2, if s > 0, or a
degenerate random variable taking the value 0 with probability 1, if s=0.
Let |0D denote convergence in distribution.

Theorem 1.2. There is a constant s1=s1(r) > 0 such that for any
sequence (An)n \ 1 of lattice rectangles with lim inf(An)=Zd, we have as
nQ. that

|An |−1 Var(N(An))Q s
2
1 (1.3)

and

|An |−1/2 (N(An)−EN(An)))|0
D

N(0, s2
1).

Various alternative boundary conditions, other than the toroidal
scheme above, are also feasible. Particles could simply roll until they touch
the surface R2 (possibly outside the target region); or any particle that ends
up touching the surface outside the target region could be removed; or (as
in Solomon’s (15) version of this model, generalized to d=2 in Weiner (19))
the boundary itself could cause a deflection of particles (imagine a ‘‘wall’’
around the boundary of the target region). For the LLN, these boundary
conditions are not so important, and a result like Theorem 1.1 can be
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obtained any boundary conditions provided the influence of the boundary
has finite range. Moreover, the target regions in the sequence do not need
to be rectangular, provided only that they satisfy a condition of vanishing
boundary length relative to their area. We do not go into details on such
generalizations because of their proximity to results in ref. 9. For the CLT,
however, alternative boundary conditions can cause extra difficulties in the
proof. We believe these can be overcome in at least some cases of non-
toroidal boundary conditions, but have not written out the details.

While toroidal boundary conditions are usually used in simulation
studies, they are not so realistic physically. Another way to avoid boundary
effects is to take the whole of R2 as target region. Our next result shows
that a stationary point process, loosely speaking the set of locations of
adsorbed points for the BD process with target region R2, exists as a weak
limit of point processes arising from bounded target regions. Let S be the
space of locally finite subsets of R2. For z ¥S and B … R2, let z(B) denote
the number of elements of z in B (so z( · ) is a counting measure). A point
process on R2 is a random element z of S. For more details, see, for
example, refs. 3, 16, and 13.

If z and zn (n ¥N) are point processes on R2, we say the sequence zn

converges weakly to z if the finite-dimensional distributions converge, i.e.,
if for any finite collection of bounded Borel sets Bi satisfying z(“Bi)=0
almost surely, the joint probability distributions of zn(Bi) converge weakly
to those of z(Bi). This is equivalent to various other definitions of weak
convergence; see, e.g., Section 9.1 of ref. 3.

Given a lattice rectangle A, let tA be the point process of locations in
R2 of ultimately accepted particles, for the BD model with target region Ã
(which will be a point process in R2, all of whose points lie in Ã). Our next
result concerns weak convergence of the point process tA as A becomes
large. As with Theorem 1.1, the result is not sensitive to the toroidal
boundary conditions.

Theorem 1.3. There exists a stationary point process t, such that if
(An)n \ 1 is any sequence of lattice rectangles with lim infn Q. An=Z2, the
sequence of point processes tAn converges weakly to t.

Given any bounded region B … R2, the interpretation of t(B) is as
follows. The variable tA(B) is the number of adsorbed points in B when the
target region is Ã. As A becomes large this has a weak limit which is t(B).
If one now, in turn, makes B large, it is of interest to know if t(B) satisfies
a CLT, and our final result says that this is indeed the case. We restrict
attention to rectangular regions although other shaped regions can also be
dealt with (see the proof ).
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Theorem 1.4. There exists a constant s2=s2(r) > 0 such that for
any sequence (Bn)n \ 1 of lattice rectangles with lim inf(Bn)=Zd, we have as
nQ. that

|Bn |−1 Var(t(B̃n))Q s
2
2 (1.4)

and

|Bn |−1/2 (t(B̃n)−Et(B̃n))|0
D

N(0, s2
2).

Other properties of the point process t are also of interest. The proof
of Theorem 1.4 involves showing that t has exponentially decaying corre-
lations, which is of interest in its own right.

Weiner (20) considered an alternative version of the BD model in two
(or more) dimensions in which the region of substrate occupied by a par-
ticle is a rectilinear square rather than a circle (the ‘‘Solomon model’’). He
claimed to prove a CLT for the number of particles ultimately adsorbed
onto a large target region. However, his argument uses assertions from
Weiner, (19) which he later retracted (Weiner (21)). It is possible to adapt our
methods to yield a CLT for Weiner’s ‘‘Solomon model,’’ at least in the case
of toroidal boundary conditions, partially vindicating Weiner’s claims
regarding this model (though not the ‘‘Renyi model’’).

2. GEOMETRIC PRELIMINARIES

In notation used throughout this paper, 0 denotes the origin (0, 0) of R2.
For x=(x1, x2) ¥ R2, ||x|| denotes the Euclidean norm (modulus) `x2

1+x2
2

of x. For x ¥ R2 and R … R2, x+R denotes the translated set {x+y: y ¥ R}.
For r > 0, define the continuum disk D(x; r) … R2 and the lattice ball
B(x; r) … Z2 by

D(x; r)={y: ||y−x|| [ r}; B(x; r)=D(x; r) 5 Z2.

If E is an event in a given probability space let 1E be the indicator random
variable taking the value 1 if E occurs and 0 if not. Finally, for any
directed graph, by a root of the directed graph we mean a vertex with
indegree zero.

We start with two purely geometric results about the mechanics of the
BD model with target region given by the infinite surface R2×{0}. Each
accepted particle lies on the substrate, and so can be represented by the
point in R2 at which it touches the surface. The position of an accepted
particle is a translate (or displacement) of the location in R2 above which it
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originally comes in. The displacement (and also the decision on whether or
not to accept) is determined by the initial location at which the particle
comes in, and the positions (after displacement) of the previously accepted
particles.

Lemma 2.1. With probability 1, no particle receives a displacement
of modulus greater than 8r.

Proof. Choi et al. (2) enumerate the possible fates an incoming ball
might undergo. Since these involve at most 4 deflections, in effect they state
the result but do not give a complete proof. Therefore we do so here.

Let each particle already accepted be represented by a point in R2

located at its point of contact with the substrate. For any two such points
the inter-point distance r (say) satisfies r \ 2r.

For a new particle, let it too be represented by a point in R2, obtained
by projecting the position of its center down onto the substrate (imagine
looking down on the substrate from above). As it rolls, the point repre-
senting the new particle performs a piecewise linear motion in R2. The first
line segment of this motion represents an initial period when the new par-
ticle touches a single existing particle, and is of length at most 2r. There-
after, each successive line segment will represent motion while touching two
existing particles, and will be along the mediator (perpendicular bisector)
between the two points representing those particles. Let dj denote the dis-
tance between the two particles which the new particle touches during the
jth step of linear motion, and note that 2r [ dj < 4r.

Each change in direction of this piecewise linear motion in R2, say
from step j to step j+1 of linear motion, will occur at the circumcenter of
three existing points. If this circumcenter lies inside the triangle with
corners at those three points, then the motion comes to a stop and the
particle is discarded, according to the BD rules. Therefore for the motion
to continue, the circumcenter lies outside this triangle, so that the triangle
must have an obtuse angle. The inter-point distance dj+1 is the longest edge
length of this triangle, while dj is one of the other two edge lengths. Since
the triangle has an obtuse angle, and all three edges are of length at least 2r,
we obtain

d2
j+1 \ d2

j+4r2,

and since the edge-lengths dj must all be at most 4r, this means that the
sequence (dj) terminates in at most three steps, in addition to the initial
rolling in contact with just a single previous particle. Since each piecewise
linear step is of length at most 2r, this completes the proof. L
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Let us say that after k adsorptions, a given point x ¥ R2 is available for
a particle to be adsorbed, if there are no adsorbed particles touching the
surface in D(x; 2r).

Lemma 2.2. There exist e0 > 0, e1 > 0 with the following property.
Suppose that for some k, after k adsorptions, a given point x ¥ R2 is avail-
able for a particle to be adsorbed. Then there exists a region of area at least
e1 such that any incoming particle with location in that region will be
adsorbed in a position that makes all points in D(x; e0) unavailable.

Proof. Assume without loss of generality that r=1/2 and x=0.
Take e0 < 1/8. First suppose no adsorbed particle lies within distance 1+e0
of the origin. Then any particle arriving in the ball D(0; e0) will be accepted
without rolling, and for such a new particle the unit diameter ball centred
at that particle covers the ball D(0; e0).

Next suppose there already exists a particle (at x, say) with 1 [ ||x||<
1+e0. A particle arriving in D(0; e0) 5 D(x; 1) will receive a first deflection
and roll, but not very far. This is because its initial distance from x is more
than 1− e0 so it initially rolls at most a distance e0 before it reaches the
surface or receives a second deflection. If a second deflection takes place, at
that instant the new particle then lies on the mediator of two adsorbed
points x, y say. The distance between x and y is more than 2(1− e0). If
a third deflection were to take place it would be at the circumcenter of
adsorbed points points x, y, z, say, making a triangle with an obtuse angle.
But this is impossible; for example if (y, z) were the longest edge, the
cosine rule would give us

||y−z||2 \ ||x−z||2+||x−y||2 \ 1+(4−8e0+4e2
0),

and therefore ||y−z|| > 2 and the third deflection does not take place.
Therefore after the second deflection the linear motion terminates either
with adsorption or rejection. By Pythagoras’ theorem, the distance tra-
velled in this last linear motion after the second deflection is at most

`1−(1− e0)2 [ (2e0)1/2

and therefore the total displacement of the particle before adsorption is at
most e0+(2e0)1/2.

Therefore if a particle arrives within a distance e0 of the origin, it is
adsorbed or rejected at a distance at most 2e0+(2e0)1/2 from the origin.
Since e0 < 1/8, this is at most 3/4. If adsorbed, it therefore prevents any
subsequent adsorption taking place in D(0; e0). Therefore we are done,
unless there is a possibility of rejection for particles arriving in D(0; e0).
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Next, suppose that it is possible for a particle arriving within distance
e0 of the origin to be rejected. If this happens it will be at the circumcenter
of points x, y, z (say) after initial deflection by x and subsequent deflection
by y (say). In this case the circumcenter of x, y, z is at a distance less than 1
from each of x, y, z, and every point inside the triangle xyz is unavailable. In
particular, the origin does not lie inside the triangle xyz; however, it does
lie within distance 2e0 of the midpoint of x and y.

Now suppose a particle lands in D(0; e0) on the same side of the line
xy as the origin. In the course of its subsequent rolling it stays on the same
side of the line xy as the origin; if not there would be some other line
segment between adsorbed centers, other than {x, y}, of length between
2(1− e0) and 2, whose midpoint lies in D(0; 2e0), which is geometrically
impossible provided e0 is sufficiently small. At the end of its motion, if it
were rejected, that would take place at the circumcenter of points xyzŒ, say,
and in that case all points landing in xyzŒ would be unavailable. However,
provided e0 is small enough, the origin must lie in xyzŒ, and therefore we
would have a contradiction.

It follows that provided e0 is small enough, a point landing in D(0; e0)
on the same side of the line xy as the origin will be accepted, in a position
that makes the region D(0; e0) unavailable. The desired conclusion follows,
with e1=pe

2
0/2. L

3. PROBABILISTIC PRELIMINARIES

The author (8, 10) has developed general LLNs and CLTs for functionals
on the restriction of spatial white noise processes to finite regions of the
lattice, as follows. Suppose (E, E, P0) is an arbitrary probability space, and
X=(Xx, x ¥ Z2) is a family of independent identically distributed random
elements of E, each Xx having distribution P0. Let XŒ be the process X with
the value X0 at the origin replaced by an independent copy Xg of X0 (that
is, an E-valued variable Xg with distribution P0, independent of X), but
with the values at all other sites the same.

Let R denote some collection of nonempty finite subsets of Z2, with
x+B ¥R for all B ¥R, x ¥ Z2.

A stationary R-indexed functional of X is a family H=(H(X; A),
A ¥R) of real-valued random variables, with the property that (Xx, x ¥ A)
determines the value of H(X; A) and H(yyX; y+A)=H(X; A) (almost
surely) for all y ¥ Z2, where yyX is the family of variables (Xx−y, x ¥ Z2).
Let D0(A) be the increment H(X; A)−H(XŒ; A). The functional H stabi-
lizes on sequences tending to Z2 if there exists a random variable D0(.) such
that for any R-valued sequence (An)n \ 1 with lim infn Q.(An)=Zd, the
variables D0(An) converge in probability to D0(.).
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A stationary R-indexed summand is a collection (Yz(X; A), A ¥R,
z ¥ A) of real-valued random variables with the property that (Xx, x ¥ A)
determines the value of Yz(X; A), and Yy+z(yyX; y+A)=Yz(X; A) (almost
surely) for all y ¥ Zd, A ¥R, z ¥ A. The associated induced stationary
R-indexed sum is given by H(X; A)=;z ¥ A Yz(X; A), which is a stationary
R-indexed functional.

We restrict attention here to the case where R is the collection, here
denoted B, of all lattice rectangles {m1,..., m2}×{m3,..., m4} with m2 −m1

> 20r and m4 −m3 > 20r. This is different from the class of sets denoted B
in ref. 10; nevertheless, the following general law of large numbers is
proved in just the same manner as the first part of Theorem 3.1 of ref. 10.

Lemma 3.1. Suppose (Yz(X; A): A ¥B, z ¥A) is a stationaryB-indexed
summand inducing a stationary B-indexed sum (H(X; A); A ¥B). Suppose
that

sup{E |Y0(X; A)|: A ¥B, 0 ¥ A} <.. (3.1)

Suppose there exists an integrable random variable Y0(X) such that
Y0(X; Bn)Q Y0(X) in L1 as nQ., for any B-valued sequence (Bn)n \ 1 with
lim inf(Bn)=Z2. If (An)n \ 1 is a B-valued sequence with lim inf(An)=Z2,
then

|An |−1 H(X; An)|0
L

1

EY0 as nQ.. (3.2)

Let F0 be the s-field generated by (Xy, yQ 0), where yQ 0 means
y precedes or equals 0 in the lexicographic ordering on Z2. The following
general CLT is a corollary of Theorem 2.1 of ref. 8 (see Remark (iii)
thereafter in ref. 8).

Lemma 3.2. Suppose (H(X; A); A ¥B) is a stationary B-indexed
functional of X which stabilizes on sequences tending to Z2, and for some
c > 2 satisfies

sup
A ¥B

E[|D0(A)|c] <.. (3.3)

Suppose that (An)n \ 1 is a B-valued sequence with lim inf(An)=Zd.
Then as nQ., |An |−1 Var(H(X; An)) converges to s2, and

|An |−1/2 (H(X; An)−EH(X; An))|0
D

N(0, s2), (3.4)

with s2=E[(E[D0(.) |F0])2] .
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We also use the following CLT for stationary random fields, from
Bolthausen. (1) For A1, A2 … Z2, let d(A1, A2)=inf{(||z1 −z2 ||: zi ¥ Ai, i=
1, 2}. Let “A1 be the set of z ¥ Z20A1 such that d(A1, {z})=1.

Lemma 3.3 (ref. 1). Suppose (kx, x ¥ Z2) is a real-valued station-
ary random field. For integers a1, a2, n \ 1 define

aa1, a2
(n)=sup{|P[F1 5 F2]−P[F1] P[F2]| : Fi ¥ s(kz: z ¥ Ai),

|Ai | [ ai, d(A1, A2) \ n}.

Suppose ;.

m=1 maa1, a2
(m) <. for a1+a2 [ 4, and a1,.(m)=o(m−2), and

E[|k0 |3] <., and ;.

m=1 ma1, 1(m)1/3 <..
Then s̃2 :=;z ¥ Z

2 Cov(k0, kz) converges absolutely, and if s̃2 > 0, then
for any sequence (Cn)n \ 1 of subsets of Z2 with |“(Cn)|/|Cn |Q 0 as nQ.,
|Cn |−1/2 ;z ¥ Cn

kz |0
D

N(0, s̃2).

4. PROOF OF LLN

Let P be a homogeneous Poisson point process of unit intensity on
R2×[0,.). Given A ¥B, label the points of the restriction of P to
Ã×[0,.) as {(Xi(A), Ti(A))}

.

i=1 withT1(A) <T2(A) <T3(A) < · · · . Through-
out the proofs of Theorems 1.1–1.3, we assume without loss of generality
that the random input for the variable N(A), defined in the introduction, is
given by the sequence of variables X1(A), X2(A),... representing the loca-
tions of successive incoming particles (thus Ti(A) is taken to be the time of
arrival of the ith incoming particle). By this device, coupled realizations of
N(A) are defined for all A ¥B simultaneously.

For each point (X, T) of the restriction of P to Ã×[0,.), define the
pair I(X, T; A)=(I0(X, T; A), IQ(X, T; A)), with I0(X, T; A) ¥ {0, 1} and
IQ(X, T; A) ¥ R2, as follows. Let I0(X, T; A) (an indicator variable) be
equal to 1 if the ball arriving at location X at time T is accepted, and to
zero if it is rejected, in the realisation of the BD model with target set Ã
described above. If I0(X, T; A)=1, let IQ(X, T; A) denote the lateral
displacement received by the particle arriving at X at time T, prior to being
adsorbed. If I0(X, T; A)=0, let IQ(X, T; A)=0.

By Lemma 2.1, the decision on whether to accept an incoming particle,
and also its displacement if accepted, are determined by the locations (after
displacement) of those particles lying within a distance at most 10r from
the location at which the new ball arrives.

The proof of the LLN and CLT involves a graphical construction. Make
the Poisson process P on R2×[0,.) into the vertex set of an (infinite)
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oriented graph, denoted G, by putting in an oriented edge (X, T)Q
(XŒ, TŒ) whenever ||XŒ−X|| [ 20r and T < TŒ. Observe that particle (X, T)
cannot affect (XŒ, TŒ) directly unless there is an edge (X, T)Q (XŒ, TŒ) or
the toroidal boundary conditions come into play.

For z=(z1, z2) ¥ Z2, and e > 0, define the squares

Qz, e :=((z1 −1) e, z1e]×((z2 −1) e, z2e]; Qz :=Qz, 1.

For x, y ¥ Z2, let us say that y is affected by x before time t if there
exists a (directed) path in the oriented graph that starts at some Poisson
point (X, T) with X ¥ Qx, and ends at some Poisson point (Y, U) with
Y ¥ Qy and U [ t. Let Et(x, y) denote the event that y is affected by x
before time t.

Lemma 4.1. There is a constant d1 ¥ (0, 1) such that for all
x, y ¥ Zd,

P[Ed1 ||x−y||(x, y)] [ 2(3−||x−y||).

Proof. See Lemma 3.1 of ref. 9. This applies directly if 20r [ 1, and
its proof is easily adapted to the case 20r > 1. L

For z ¥ Zd and t > 0, define the cluster Cz, t … Zd by

Cz, t :={x ¥ Zd : z is affected by x before time t}, (4.1)

which is almost surely finite by Lemma 4.1 and the Borel–Cantelli lemma.
Let Bz, t be the smallest element of B that contains 1x ¥ Cz, t

B(x; 4+20r).
Note that Bz, t includes a ‘‘buffer zone’’ around Cz, t so that

dist 1 0
y ¥ Z

d
0Bz, t

Qy, 0
x ¥ Cz, t

Qx
2 > 20r,

so that even if we were to add extra points outside the union of squares Qy,
y ¥ Bz, t, there will not be any connected path in the graph from any of
these added points to any Poisson point (X, T) ¥ Qz ×(0, t]. This will be
important later on.

Lemma 4.2. Suppose z ¥ Z2, t > 0. If A is a lattice box with
Bz, t ı A, then for all Poisson points (X, T) lying in Qz ×[0, t] we have
I(X, T; A)=I(X, T; Bz, t).

Proof. By definition, the influence of Poisson points outside Bz, t

does not propagate to any Poisson points in Qz ×[0, t]. Therefore the fate
of such points is the same whether the target region is Ã or B̃z, t. L
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Let S0 be the space of all finite subsets S of D(0; 10r) such that
||x−y|| \ 2r for all distinct x, y ¥ S. Define Y0:S0 Q {0, 1} and YQ:S0 Q R2

as follows. For S ¥S0, let Y0(S) take the value 1 (respectively 0) if an
incoming particle at the origin of R2 is accepted (respectively rejected),
given that S is the configuration of previously accepted particles in
B(0; 10r). If Y0(S)=1, let YQ(S) ¥ R2 be the (lateral) displacement of
an incoming particle at the origin of R2, prior to acceptance, given that
S is the configuration of previously accepted particles in B(0; 10r). If
Y0(S)=0, let YQ(S)=0 ¥ R2.

We construct a spatially homogeneous form of the BD model with the
whole of R2 as target region, as follows. Define subsets Gi, i=0, 1, 2, 3,...,
of P as follows. Let G0 be the set of roots of G, and recursively, if G0,..., Gn

are defined, let Gn+1 be the set of roots of the graph G with all vertices in
G0,..., Gn removed. As a consequence of Lemma 4.1, the sets G0, G1, G2,...
form a partition of P (see ref. 9, Lemma 3.2).

Define I(X, T)=(I0(X, T), IQ(X, T)) with I0(X, T) ¥ {0, 1} and
IQ(X, T) ¥ R2 (representing acceptance status and lateral displacement
respectively) for (X, T) ¥ G0, G1,... as follows. If (X, T) ¥ G0 then set
I0(X, T)=1 and IQ (X, T)=0. Recursively for n=1, 2, 3,..., for (X, T)
¥ Gn, set

SX, T=3Y+IQ(Y, U)−X : (Y, U) ¥ 0
n−1

m=0
Gm, I0(Y, U)=1,

||Y+IQ(Y, U)−X|| [ 10r4 ,

then set I0(X, T)=Y0(SX, T) and IQ(X, T)=YQ(SX, T).
For t > 0, let tt be the point process of positions after displacement of

particles accepted up to time t; that is, re-labelling the points of P in arbi-
trary order as {(Xj, Tj)}

.

j=1, let tt be the random locally finite set in R2

defined by

tt={Xj+IQ(Xj, Tj) : I0(Xj, Tj)=1, Tj [ t}. (4.2)

This point process is now rigorously defined in terms of the Poisson
process P and the graphical construction. It is a stationary point process
on R2. Define the limiting point process

t=0
t \ 0
tt. (4.3)
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Similarly, forA ¥B let tA
t be the set of locations after displacement (using

the toroidal boundary conditions) of points (X, T) of P 5 (Ã×[0,.))
such that T [ t and I0(X, T; A)=1. All points of tA

t lie in Ã. Define the
limiting point process tA=1t \ 0 t

A
t , a point process in Ã.

Choose e2 ¥ (0, e0/2), with e0 taken from Lemma 2.2, and with
1/e2 ¥N. For z ¥ Zd, let bz denote the (random) time at which the square
Qz, e2 becomes blocked, i.e., the first time at which the point process tt

leaves no part of the surface of the square Qz, e2 still available to adsorb a
sphere. For A ¥B, define bA

z in the same way with respect to the point
process tA

t . The next result says that the variables bz and bA
z are almost

surely finite and in fact their distributions have tails which decay exponen-
tially, uniformly in z, A.

Lemma 4.3. It is the case that

lim sup
t Q.

t−1 sup
z ¥ Z

2
{log P[bz \ t]} < 0, (4.4)

and

lim sup
t Q.

t−1 sup{log P[bA
z \ t]: A ¥B, z ¥ Z2, Qz, e2 … Ã} < 0. (4.5)

Proof. Suppose bz > t, i.e., at time t there exists a point x ¥ Qz, e2 that
is not yet covered, i.e., still available. Then by Lemma 2.2, the probability
of a particle arriving and causing Qz, e2 to be covered by time t+h is at least
e1h+o(h). Therefore we can choose h1 > 0 such that

P[bz > t+h1 | bz > t] [ 1− e1h1/2,

so that by induction, P[bz > nh1] [ (1− e1h1/2)n for all n ¥N. This argu-
ment holds uniformly in z, and (4.4) follows. Furthermore, the same
argument carries through to the torus, to give (4.5). L

For y ¥ Zd, let

Jy=max{bz: Qz, e2 … Qx, x ¥ B(y; 4+20r)}, (4.6)

and (for y ¥ A ¥B, with || · ||A denoting the toroidal metric)

JA
y=max{bA

z : Qz, e2 … Qx, x ¥ A, ||x−y||A [ 4+20r}. (4.7)

Limits for Continuum Ballistic Deposition 573



For each x ¥ B(y; 4+20r), the square Qx is jammed by the point
process tJy

, meaning that it is not possible for any Poisson point arriving
after time Jy to be accepted at a position in Qx. In particular, by Lemma 2.1,
all particles arriving in Qy after time Jy are rejected. Define the enlarged
‘‘cluster’’ B −y by

B −y= 0
x ¥ B(y; 4+20r)

Bx, Jy
.

Using this enlarged cluster we can strengthen Lemma 4.2 to account for
arrivals at all times, as follows.

Lemma 4.4. Suppose y ¥ Z2. If A is a lattice rectangle with B −y ı A,
then for all Poisson points (X, T) lying in Qy ×[0,.) we have I(X, T; A)
=I(X, T; B −y)=I(X, T).

Proof. Suppose (X, T) is a Poisson point in Qx ×[0, Jy], for some
x ¥ B(y; 4+20r). Then by Lemma 4.2, we have I(X, T; A)=I(X, T; B −y)=
I(X, T).

By definition of Jy, it follows that the restriction of the point process
tA

Jy
to the set 1x ¥ B(y; 2+10r) Qx precludes the subsequent adsorption of any

more particles in 1x ¥ B(y; 2+10r) Qx, and in particular prevents acceptance of
any subsequent particles arriving in Qy; therefore for every Poisson point
(X, T) ¥ Qy ×(Jy,.), we have I(X, T; A)=I(X, T; B −y)=(0, 0). L

By Lemma 4.3, the variable Jy has an exponentially decaying tail, uni-
formly in y, i.e.,

lim sup
t Q.

t−1 sup
y ¥ Z

d
log P[Jy > t] < 0. (4.8)

For z ¥ Zd, let Xz be the image of the restriction of P to Qz ×[0,.), under
the translation that sends each point (X, T) to (X−z, t). This is a homo-
geneous Poisson point process on Q0×[0,.). The Poisson processes
(Xz, z ¥ Z2) are independent identically distributed random elements of a
measurable space (E, E), where E is the space of locally finite subsets of
Q0×[0,.). The idea behind the proof of Theorems 1.1 and 1.2 is to
regard N(A) as a stationary B-indexed functional driven by the process
X=(Xz)z ¥ Z

2, and use Lemmas 3.1 and 3.2 from Section 3. We write X
rather than X in this case.

Proof of Theorem 1.1. For A ¥B and z ¥ Z2, set

Yz(X; A)= C
(X, T) ¥P 5 (Qz ×[0,.))

I(X, T; A). (4.9)
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Then (Yz(X; A), A ¥B, z ¥ A) defined by (4.9) is a stationary B-indexed
summand on on the process X=(Xz)z ¥ Z

2, and the corresponding station-
ary B-indexed sum H(X; A) is equal to N(A). It suffices to check the con-
ditions in the general result Lemma 3.1. Since the variables Yz(X; A) are
uniformly bounded by a constant, (3.1) holds.

Suppose (An)n \ 1 is a B-valued sequence with lim inf(An)=Zd. Then
there exists a random variable N1 such that for all n \N1, B −0 ı An.
By Lemma 4.4, for all n \N1 and all Poisson points in Q0 ×[0,.) we have
I(X, T; An)=I(X, T; B −0). Hence Y0(X; An)=Y0(X; B

−

0) for n \N1, so
Y0(X; An) converges almost surely to Y0(X; B

−

0) as nQ.. Therefore
Lemma 3.1 applies to give us (1.2) with convergence in L1. Convergence in
Lp then follows since N(A)/|A| is uniformly bounded by a constant. L

Proof of Theorem 1.3. Suppose (An)n \ 1 is a B-valued sequence
with lim inf(An)=Z2. It suffices to prove that for any bounded Borel
B … Rd we have almost sure convergence

tAn(B)Q t(B). (4.10)

If n is sufficiently large so that B −z ı An for all z within distance 4+10r
of B, then by Lemma 4.4, tAn(B)=t(B), which gives us (4.10). L

5. PROOF OF CLTS

With X as defined in the previous section, (N(B), B ¥B) is a station-
ary B-indexed functional driven by the white noise process X. Our goal is
to apply Lemma 3.2.

In this setting, the process XŒ appearing in the conditions for Lemma 3.2
is obtained from the process PŒ defined as follows. Let XŒ be the Poisson
process obtained by replacing the restriction X0 of P to Q0×[0,.) with an
independent Poisson process Xg on Q0×[0,.), so that

XŒ=(P0(Q0×[0,.))) 2Xg. (5.1)

The points of PŒ0(Q0×[0,.)) are the same as those of
P0(Q0×[0,.)). However, the decision on whether to accept may be dif-
ferent; let IŒ(X, T)=(I −0(X, T), I

−

Q(X, T)) be defined in the same manner
as I(X, T) but based on the process generated by PŒ rather than P;
likewise, given A ¥B, for (X, T) ¥PŒ 5 (Ã×[0,.)) let IŒ(X, T; A)=
(I −0(X, T; A), I

−

Q(X, T; A)) be defined in the same manner as I(X, T; A)
but based on the process generated by PŒ rather than P.
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Lemma 5.1. Let z ¥ Zd, and t > 0. Suppose 0 ¨ B −z. Then
I(X, T; A)=IŒ(X, T; A) for all points (X, T) of P in Qz ×[0,.), and all
A ¥B with B −z … A.

Proof. Suppose (X, T) is a point of P, with X ¥ Qz. Then

I(X, T; A)=I(X, T; B −z)=IŒ(X, T; B −z)=IŒ(X, T; A),

where the first equality comes from Lemma 4.4, and the second comes
from the equality of P and PŒ outside Q0 ×[0,.). L

The idea for proving stabilization goes as follows. By Lemma 4.1, the
effect of changing the inputs at the origin propagates like an ‘‘infection’’
spreading through space at a linear rate. However, if this ‘‘infection’’
encounters a ‘‘wall’’ of thickness 10r surrounding the origin, consisting of
sites which are entirely blocked before the infection reaches them, then this
wall prevents any spread of the effect of changing inputs at the origin to
the other side of the wall. The existence with high probability of a wall
surrounding the origin follows from the fact that the probability that a site
is not blocked by time t decays exponentially in t.

By Lemma 4.1 and (4.8), P[0 ¥ B −z] decays exponentially in ||z||.
Therefore, by the Borel–Cantelli lemma,

P[0 ¥ B −z for infinitely many z]=0. (5.2)

For t > 0, define the annular region

At := 0
z ¥ B(0; t+4+20r)0B(0; t)

Qz

and the ‘‘distant’’ set

Dt:= 0
z ¥ Z

2
0B(0; t+4+20r)

Qz.

Lemma 5.2. Let t > 0, and suppose 0 ¨ B −z for all z ¥At 5 Zd. Then
I(X, T; A)=IŒ(X, T; A) for all points (X, T) of P in At 2Dt, and all
A ¥B with B −z … A for all z ¥At 5 Zd.

Proof. Suppose 0 ¨ B −z for all z ¥At. Suppose also A ¥B with B −z … A
for all z ¥At. By Lemma 5.1,

I(X, T; A)=IŒ(X, T; A), -(X, T) ¥P 5 (At ×[0,.)). (5.3)
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Next consider Poisson points (X, T) with X ¥Dt. Any path to (X, T)
from Q0×[0,.) must pass through At ×[0,.), and the status of all
points in this region is unaffected by the change in P0, so that
I(X, T; A)=IŒ(X, T; A). More formally, we use an induction, as follows.

Define generations G0(A, t), G1(A, t),... as follows. Let G(A, t) be the
restriction of G to vertices in (Dt 5 Ã)×[0,.). Let G0(A, t) be the set of
roots of G(A, t). Then remove vertices of G0(A, t) from G(A, t) and let
G1(A, t) be the set of roots of the remaining oriented graph. Then remove
vertices in G1(A, t) too and let G2(A, t) be the set of roots of the remaining
graph and so on. The sets G0(A, t), G1(A, t),... form a partition of the
vertex set of G(A, t), because Cz, t defined at (4.1) is finite for all z, t.

The inductive hypothesis is that if (X, T) ¥ Gn(A, t), then I(X, T; A)=
IŒ(X, T; A). This is true for n=0, because if (X, T) ¥ G0(A, t), then any
(XŒ, TŒ) for which XŒ ¥ Ã and there is an edge from (XŒ, TŒ) to (X, T) lies
in the annulus At ×[0,.), and therefore by (5.3) satisfies IŒ(XŒ, TŒ; A)=
I(XŒ, TŒ; A), which implies IŒ(X, T; A)=I(X, T; A), since the decision on
the value of I(X, T; A) depends only on the decisions at points (XŒ, TŒ)
from which there are edges to (X, T)

Now suppose the hypothesis is true for n=0, 1,..., k−1. Then if
(X, T) ¥ Gk(A, t) all of the points (XŒ, TŒ) from which there is an edge to
(X, T) lie either in one of the generations G0(A, t),..., Gk−1(A, t), or in
At ×[0,.), and therefore, by the inductive hypothesis and by (5.3), all
such (zŒ, TŒ) satisfy I(zŒ, TŒ; A)=IŒ(zŒ, TŒ; A), and hence again IŒ(z, T; A)=
I(z, T; A). L

Lemma 5.3. If for A ¥B we set

D0(A)=C
z ¥ A

C
(X, T) ¥P: X ¥ Qz

(I(X, T; A)−IŒ(X, T; A))

then

sup
A ¥B

E[|D0(A)|3] <.. (5.4)

Proof. Modify the graphical construction from Section 4 to produce
an oriented graph GA with vertex set the Poisson process P 5 (Ã×[0,.)),
by putting in an oriented edge (X, T)Q (XŒ, TŒ) whenever ||XŒ−X||A [ 20r
and T < TŒ, where || · ||A denotes the toroidal metric. For x, y ¥ A, let us say
that y is affected in A by x before time t if there exists a (directed) path in
the oriented graph GA that starts at some Poisson point (X, T) with
X ¥ Qx, and ends at some Poisson point (Y, U) with Y ¥ Qy and U [ t. For
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z ¥ A and t > 0, define the ‘‘A-cluster’’ CA
z to consist of all x ¥ A such that

some y ¥ A with ||y−z||A [ 4+20r is affected in A by x before time JA
y .

A similar argument to the proof of Lemma 5.1 yields I(X, T; A)=
IŒ(X, T; A) for all (X, T) with X ¥ Qz and B(0; 4+20r) 5 CA

z =”. Hence
there is a constant c such that for any A ¥B,

D0(A) [ c C
z ¥ A

1{B(0; 4+20r) 5 CA
z ]”}.

However, P[B(0; 4+20r) 5 CA
z ]”] decays exponentially in ||z||A, uni-

formly over A ¥B, because of Lemmas 4.1 and 4.3. The bounded moments
condition (5.4) follows. L

Proof of Theorem 1.2. As in the proof of Theorem 1.1, define
Yz(X; A) by (4.9). The aim is to apply Lemma 3.2. The bounded moments
condition (3.3) follows from Lemma 5.3.

We need to check stabilization. By (5.2), there exists a random R such
that 0 ¨ B −z for z ¥ Zd with ||z|| \ R. Let B. be the smallest element of B
containing 1z ¥ B(0; R) B

−

z. Suppose (An)n \ 1 is a B-valued sequence with
lim inf(An)=Zd. Then there exists random N2 such that

B. … An, for all n \N2.

and such that a similar expression holds with regard to the Poisson process
PŒ rather than P. Then by Lemma 4.4, for all n \N2 and for all z ¥
B(0; R), we have

Yz(X; An)−Yz(XŒ; An)=Yz(X; B.)−Yz(XŒ; B.) for all n \N2.
(5.5)

Also, there exists random N3 \N2 such that for all n \N3 we have

B −z … An for all z ¥AR 5 Zd.

Hence by the definition of R and Lemma 5.2, for all z ¥ Zd0B(0; R),

Yz(X; An)=Yz(XŒ; An) for all n \N3.

Combined with (5.5), this gives us for all n \N3,

C
z ¥ An

(Yz(X; An)−Yz(XŒ; An))= C
z ¥ B(0; R)

(Yz(X; B.)−Yz(XŒ; B.)),
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which demonstrates stabilization of the induced functional

H(X; A)=C
y ¥ A

Yy(X; A)=N(A).

Therefore all the conditions for Lemma 3.2 hold here, and by that result
the conclusion of Theorem 1.2 holds, subject to showing that s1 > 0.

The value of s1 is independent of the choice of sequence (An)
(provided lim inf(An)=Z2) and therefore to show s1 > 0 using (1.3) we are
at liberty to choose any sequence (An)n \ 1. Let K=K200rL. Take An to be a
lattice square of side Kn, and divide Ãn into squares of side K, which we
shall refer to as blocks.

Inside each block Si let Ti be the annulus of thickness 18r, consisting
of points at a distance more than 2r but less than 20r from the boundary
of the block. Also let S−

i be the interior region consisting of points at a
distance more than 20r from the boundary of the block. Let Ii be the
indicator random variable of the event that before there are any arrivals at
all in Si 0Ti, a sequence of ball centers arrive in Ti in such a way that the
corresponding particles are adsorbed without rolling and cause a barrier
between the interior region S−

i and the complement of Si, by making all
points in Ti unavailable.

The probability P[Ii=1] is very small but not zero, and does not
depend on i or n since K is fixed. Let Nn=;n2

i=1 Ii. Then E[Nn]/|An | is a
non-zero constant.

Let F be the s-field generated by the value of Nn, along with the
positions of the accepted particles not lying in the union of the squares
{S−

i : Ii=1}. Then

Var(H(An))=Var(E[H(An) |F])+E[Var(H(An |F))]

\ E[Var(H(An |F))].

Suppose we are given the value of Nn and the configuration of accepted
items outside the squares S−

i , Ii=1. The only remaining variability is from
the number of accepted items inside the inner squares S−

i contributing toNn.
Let Sg

i be the square consisting of points in Si at a distance at least
22r from Si, i.e., a slightly smaller square inside S−

i . We consider two pos-
sible lattice configurations inside Sg

i .
Let {xi, 1,..., xi, n1

} be the restriction to Sg
i of a regular triangular lattice

with each point distant (2.02) r from its neighbours (tight packing). Let
{yi, 1,..., yi, n2

} be the restriction to Sg
i of a regular triangular lattice with

each point distant 3r from its neighbours (loose packing). Let Ei be the
event that the first n1 particles in S−

i to arrive are in the small disks
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D(xi; 0.01), 1 [ i [ n1, and are in different disks. Let Fi be the event that
the first n2 particles in S−

i to arrive are in the disks D(yi; 0.01), 1 [ i [ n2,
and are in distinct disks.

Events Ei and Fi have probability bounded away from zero. More
particles will be packed into the square S−

i on event Ei than on event Fi.
It follows that there is a constant c > 0 such that given Nn=k,
Var(H(An) |F) \ ck. Therefore Var(H(An)) \ cE[Nn], and this divided by
|An | is bounded away from zero. Hence s1 > 0 by (1.3). This completes the
proof. L

Finally we shall prove Theorem 1.4. The aim is to apply Lemma 3.3.
Let the point processes tt and t (the set of locations of adsorbed particles
at time t and at time ., respectively) be as defined at (4.2) and (4.3). The
family of variables (t(Qz), z ¥ Z2) forms a stationary random field. We
need to show rapidly decaying correlations for this random field, and do so
via Lemmas 5.4 and 5.5 below. The first of these (but apparently not the
second) can be proved using Theorem 4.20 from Chapter I of Liggett, (7) but
we take a different approach which is closer to that used already.

For z ¥ Zd, let B'z be the union of all sets B −y, y ¥ B(z; 10r+2).
Lemmas 4.1 and 4.3 imply an exponentially decaying tail for the diameter
of the set B −0, and hence the distribution of the diameter of B'z also has an
exponentially decaying tail, uniformly in z, i.e.,

lim sup
r Q.

sup
z ¥ Z

d
r−1 log P[B'z 0B(z; r) ]”] < 0. (5.6)

Lemma 5.4. Given any finite C … Z2, let FC be the s-field generated
by (t(Qz), z ¥ C). There exist positive finite constants KŒ, d2 such that if
C, CŒ are sets in Z2, both of cardinality at most 4, and the distance between
them is d(C, CŒ), we have for all events F ¥FC, G ¥FCŒ,

P[F 5 G]−P[F] P[G] [KŒ exp(−d2d(C, CŒ)).

Proof. Let PŒ be an independent copy of the Poisson process P.
Suppose F ¥FC and G ¥FCŒ. Then F={(t(Qz))z ¥ C ¥ R} for some Borel
R … RC, and G={t(Qz)z ¥ CŒ ¥ RŒ) for some Borel RŒ … RCŒ.

Let HC be the set of points of R2 lying closer to C than to CŒ and let
HCŒ=R20HC. Let Fg be defined like F but based on points of the Poisson
process

Q :=(P 5 (HC×[0,.))) 2 (PŒ 5 (HCŒ×[0,.))).
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That is, let t (1) be defined in the same manner as t (Eq. (4.3)) but in terms
of the Poisson process Q instead of P, and let Fg :={(t (1)(Qz))z ¥ C ¥ R}.
Similarly, let Gg be defined like G based on points of

QŒ :=(P 5 (HCŒ×[0,.))) 2 (PŒ 5 (HC×[0,.))),

that is, let t (2) be defined in the same manner as t (Eq. (4.3)) but in terms
of the Poisson process QŒ instead of P, and let Gg :={(t (2)(Qz))z ¥ CŒ ¥ RŒ}.

Then Fg and Gg are independent (since based on independent Poisson
processes Q, QŒ), and P[Fg]=P[F], and P[Gg]=P[G]. Therefore

P[F 5 G]−P[F] P[G]=P[F 5 G]−P[Fg 5 Gg]

so that

|P[F 5 G]−P[F] P[G]| [ P[FgFg]+P[GgGg].

By Lemma 4.4, FgFg does not occur if Qy …HC for all y ¥ B'x and all
x ¥ C. Likewise, GgGg does not occur if Qy …HCŒ for all y ¥ B'x and all
x ¥ CŒ. By (5.6), P[FgFg] and P[GgGg] both decay exponentially in
d(C, CŒ), uniformly over finite C … Z2, CŒ … Z2 of cardinality at most 4 and
over F ¥FC, G ¥FCŒ. L

Lemma 5.5. Let F0=F{0} and let Ft be the s-field generated by the
variables t(Qz), z ¥ Zd0B(t). Then sup{|P[F 5 G]−P[F] P[G]|: F ¥F0,
G ¥Ft} decays exponentially in t.

Proof. Let PŒ be an independent copy of the Poisson process P.
Suppose F ¥F0 and G ¥Ft. Let Fg be defined like F but based on points of

(P 5 (D(0; t/2)×[0,.))) 2 (PŒ 5 (R20D(0; t/2))×[0,.))

and let Gg be defined like G but based on points of

(PŒ 5 (D(0; t/2)×[0,.))) 2 (P 5 (R20D(0; t/2))×[0,.)).

The precise definition of Fg and Gg is analogous to that used in the
preceding proof. Then Fg and Gg are independent, P[Fg]=P[F], and
P[Gg]=P[G]. Therefore, as in the preceding proof,

|P[F 5 G]−P[F] P[G]| [ P[FgFg]+P[GgGg].

By Lemma 4.4, FgFg does not occur if B'0 … B(0; t/4). Hence by (5.6),
P[FgFg] decays exponentially in t, uniformly over F ¥F0.
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By an extension to the proof of Lemma 5.2, GgGg does not occur if

B(0; 3t/4) 5 B −z=” -z ¥At−2 5 Zd

and the probability of this last event decays exponentially in t by (5.6). L

Proof of Theorem 1.4. By Lemmas 5.4 and 5.5, the result follows
by taking Cn=Bn, in Lemma 3.3, provided we have s2 > 0. An elementary
argument shows that with kz=t(Qz),

|Bn |−1 Var 1 C
x ¥ Bn

kx
2Q C

z ¥ Z
2
Cov(k0, kz) :=s

2
2,

and the left hand side of this expression can be shown bounded away from
zero by a similar argument to that used at the end of the proof of Theorem 1.2.
Therefore s2 > 0. L
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